
Shrinivas Joshi, Advanced Micro Devices, Inc. {shrinivas.joshi@amd.com}

Introduction

Users who have deployed and tried
tuning their Hadoop clusters for the first
time will certainly attest to the fact that
optimizing Hadoop clusters is a
daunting task.

Apart from the nature and
implementation of Hadoop jobs,
hardware, network infrastructure, OS,
JVM, and Hadoop configuration
properties all have a significant impact
on performance and scalability of
Hadoop workloads.

Using TeraSort as a reference workload,
this poster attempts to educate the
audience on challenges involved in
tuning performance of Hadoop setup,
different tools available for monitoring
and diagnosing performance
bottlenecks, tuning best practices,
empirical data on effect of various
tunings on performance, and some
future directions.

Challenges

• Hadoop is a large and complicated
framework involving a number of
entities interacting with each other
across multiple hardware systems.
• Performance of Hadoop jobs is
sensitive to every component of the
cluster stack: Hadoop configuration,
JVM, OS, network infrastructure,
underlying hardware, and possibly
BIOS settings.
• Hadoop supports a large number of
configuration properties and a good
chunk of these can potentially impact
performance.
• As with any large software system,
diagnosing performance issues is a
complicated task.

Tools

• Ganglia and Nagios – effective in
monitoring cluster-wide statistics.
• Hadoop Vaidya – offers guidelines on
mitigating framework-level bottlenecks.
• Hadoop Core – offers simple and
insightful information on performance-
affecting events.
• AMD CodeAnalystTM, Oracle® Solaris
Studio and Intel® VTuneTM – profilers
for in-depth source-level analysis.
• AMD MultEvent, Linux perf, and
OProfile – platform-level profilers for
in-depth analysis of hardware-level
performance events.

Tuning Highlights
• On ClusterA, we achieved a speed-up
factor of 5.6X.
• On ClusterB, we achieved a speed-up
factor of 2.2X.

Conclusion &
Future Direction
• Configuration tuning of all the
components of Hadoop stack is an
important exercise and can offer a huge
performance payoff.
• Different Hadoop workloads will have
different characteristics, so it is
important to experiment with different
tuning options.
• We want to perform a similar study in
multi-tenant environments and in the
cloud environment.
• We want to explore JVM and JDK
optimizations targeting peculiar
characteristics of Hadoop framework
and jobs running on top of it.

• On 64-bit Oracle JDK 6 update 25,
compressed pointers are ON by default. If
you are using an older version of JDK and
compressed pointers are disabled,
experiment with enabling them.
• Compressed pointers reduce memory
footprint.

JVM Configuration Tuning
• Biased-locking feature of Oracle HotSpot
JDK improves performance in scenarios
with uncontended locks.
• Given the architecture of Hadoop
framework, biased locking should
generally improve performance.

• When all the CPU cores on the
hardware are not fully utilized, the
processor could be downgrading CPU
frequency.
• Experiment with ACPI and other
power-related BIOS options.

BIOS Configuration Tuning

• Modern AMD processors support a
feature called HT assist (a.k.a. probe
filters). This feature reduces traffic on
memory interconnects at the expense of
some portion of L3 cache.
• Experiment with this feature. Try
disabling it if your job is cache-sensitive.

• Native command queuing feature of
modern hard drives helps improve I/O
performance by optimizing drive head
movement.
• Experiment with AHCI option in BIOS,
which can be used to enable NCQ mode.

• On some AMD processor-based
systems, HyperTransportTM link speed
and width are dynamically adjusted to
reduce power consumption.
• If memory bandwidth is a bottleneck,
experiment with this option.

• Certain Linux distributions support
EXT4 as the default file-system type.
• If you are using another type of file
system, experiment with EXT4 file
system.

OS Configuration Tuning

• Using maximum possible map and
reduce slots, identify the optimal number
of disks that maximizes I/O bandwidth.
• Experiment with different HDFS block
sizes.
• Identify heap usage and GC
characteristics of framework processes
and lock in their heap and GC settings.

Hadoop Configuration Tuning

• Try to avoid or eliminate intermediate
disk I/O operations on reduce side by
tuning heap sizes of reduce JVMs.
• If the reduce functionality is not heap
heavy, adjust map output buffer size.
• Tune framework-related resources such
as task tracker threads, data node, and
name node handler count.

• Start with biggest-payoff properties.
• Enable map output compression.
• Experiment with different codec choices.
In our experience, LZO codec performed
better across multiple workloads.
• Experiment with JVM reuse policy.
• This helps reduce disk & network I/O
wait and increase CPU utilization.

• If memory is not a bottleneck, try to
eliminate map-side spills by tuning
io.sort.mb. At the least, reduce the
number of spills.
• In case there are no spills, tune
io.sort.spill.percent.
•This also helps reduce disk I/O wait
time and increase CPU utilization.

Best Practices
Hadoop:
• Identify the right number of data disks
your job requires.
• Observe Hadoop framework heap
usage and GC patterns and lock in heap
and GC JVM flags for these processes.
• Using default settings, start with
Hadoop configuration tuning.
• Focus on properties shown to have a
big impact, such as map/reduce output
compression and JVM reuse policy.
• Avoid or eliminate map-side spills.
• Avoid or eliminate reduce-side disk
I/O by tuning reduce JVM heap size,
map output copier threads, merge
factor, and tasktracker threads handling
reduce-side requests.
• If reduce functionality is not heap-
heavy, try to maximize the map output
storage buffers.
• Try to maximize CPU usage by tuning
number of map and reduce JVMs.
• Tune other framework-related
components such as datanode and
namenode handler count.

JVM:
• Experiment with performance-
affecting JVM flags such as biased
locking, compressed pointers,
AggressiveOpts, etc.
• Perform a thorough Java GC analysis
and tune GC related flags.

Operating System:
• Experiment with various OS-level
tunings such as choice of FS, choice of
I/O scheduler, and limits on OS
resources.

BIOS:
• Finally, verify if any default BIOS
settings are negatively affecting
performance of your Hadoop jobs.

Cluster A
• 6 DNs, 1 NN: 2 chips/6 cores per chip:
AMD OpteronTM 2435 @2.6GHz
• 16GB DDR2 800 RAM per node
• 6 x 1TB Samsung Spinpoint F3 @7200
• Ubuntu 11.04 Server x64, Oracle JDK6
update 25 x64
• Dataset size – 64 GB

Cluster B
• 5 DNs: 2 chips/4 cores per chip: AMD
Opteron 2356TM @2.3GHz
• 1 NN: 4 chips/4 cores per chip: AMD
Opteron 8356TM @ 2.6GHz
• 64GB DDR2 667 and DDR2 800 RAM
• 6 x 1TB Samsung Spinpoint F3 @7200
• Ubuntu 11.04 Server x64, Oracle JDK6
update 25 x64
• Dataset size – 1 TB

• Experiment with AggressiveOpts flag.
• Experiment with UseCompressedStrings
flag.
• Experiment with UseStringCache flag.
• Experiment with UseNUMA flag.
•Experiment with UseLargePages flag.

• Verify whether the JVM is running out of
code cache. Increase code cache size if
necessary.
• Perform detailed GC log analysis and
tuning.

• By default, every file read operation
triggers a disk write operation for
maintaining last access time.
• Disable this logging using noatime,
nodirtaime FS attributes.
• Experiment with other FS attribute
tuning such as extent, flex_bg, barrier etc.

• Linux kernels support 4 different types of
I/O schedulers – CFQ, deadline, no-op,
and anticipatory.
• Experiment with different choices of I/O
scheduler, especially CFQ and deadline.

100.00%

85.00%

0

0.2

0.4

0.6

0.8

1

1.2

FS attributes

E
x

ec
u

ti
o

n
 t

im
e

Effect of noatime file system attribute

FS noatime attribute disabled

FS noatime attribute enabled

100.00%

85.00%

0

0.2

0.4

0.6

0.8

1

1.2

IO scheduler choices

E
x

ec
u

ti
o

n
 t

im
e

Effect of I/O scheduler choices

"deadline" scheduler

"CFQ" scheduler

100.00%

91.00%

0

0.2

0.4

0.6

0.8

1

1.2

File system type

E
x

ec
u

ti
o

n
 t

im
e

Effect of EXT4 file system

Data disks using EXT3 FS

Data disks using EXT4 FS

100.00%
97.00%

0

0.2

0.4

0.6

0.8

1

1.2

GC tuning

E
x

ec
u

ti
o

n
 t

im
e

Effect of GC tuning

Without GC tuning

With GC tuning

100.00%

81.80%

0

0.2

0.4

0.6

0.8

1

1.2

Map-side spill configurations

E
x

ec
u

ti
o

n
 t

im
e

Effect of eliminating map-side spills &
tuning io.sort.factor

Map-side spills occuring

Map-side spills eliminated

100.00%

71.80%

0

0.2

0.4

0.6

0.8

1

1.2

Map output compression configuration

E
x

ec
u

ti
o

n
 t

im
e

Effect of enabling map compression using
LZO

Compression disabled

Compression enabled

100.00%
94.00%

0

0.2

0.4

0.6

0.8

1

1.2

Reduce side buffer space configuration

E
x

ec
u

ti
o

n
 t

im
e

Effect of tuning reduce-side configurations

Without reduce side tuning

With reduce side tuning

100.00%
94.50%

0

0.2

0.4

0.6

0.8

1

1.2

Biased locking configuration

E
x

ec
u

ti
o

n
 t

im
e

Effect of biased locking

Biased locking disabled

Biased locking enabled

100.00%
96.80%

0

0.2

0.4

0.6

0.8

1

1.2

Compressed pointers configuration

E
x

ec
u

ti
o

n
 t

im
e

Effect of compressed pointers

Compressed pointers
disabled

Compressed pointers
enabled

100.00% 102.00%

0

0.2

0.4

0.6

0.8

1

1.2

Aggressive optimizations configuration

E
x

ec
u

ti
o

n
 t

im
e

Effect of JVM aggressive optimizations

Without -XX:+AggressiveOpts
flag

With -XX:+AggressiveOpts flag

• Linux OS limits such as max open file
descriptors and epoll limits can affect
performance.
• Experiment with these limits.

100.00% 101.00%

0

0.2

0.4

0.6

0.8

1

1.2

Linux open file descriptors limit settings

E
x

ec
u

ti
o

n
 t

im
e

Effect of Linux OS resource settings

Default open FD limit (1024)

Open fd limit set to 16K

100.00% 99.00%

0

0.2

0.4

0.6

0.8

1

1.2

Power saving settings in BIOS

E
x

ec
u

ti
o

n
 t

im
e

Effect of power-saving settings in BIOS

Power saving enabled in BIOS

Power savings disabled in BIOS

© 2011 Advanced Micro Devices, Inc. AMD, the AMD Arrow logo, AMD Opteron and combinations thereof are trademarks of Advanced Micro Devices, Inc. HyperTransport is a trademark of HyperTransport Technology Consortium.

100.00%

51.00%

43.00%

0

0.2

0.4

0.6

0.8

1

1.2

Number of data disks

E
x

ec
u

ti
o

n
 t

im
e

Scaling with number of data disks

1 disk

3 disks

5 disks

100.00% 98.00%

0

0.2

0.4

0.6

0.8

1

1.2

HyperTransport settings

E
x

ec
u

ti
o

n
 t

im
e

Effecting of tuning HyperTransport settings

HyperTransport link speed and
width set to "auto"

HyperTransport link speed set to
2.2GHz and width set to 16

76.01

44.58

1.26

4.59

8.30

0.30

3.30

0

10

20

30

40

50

60

70

80

64 GB TeraSort on ClusterA 1TB TeraSort on ClusterB

T
o

ta
l

p
er

ce
n

ta
g

e
g

ai
n

s
as

 c
o

m
p

ar
ed

 t
o

 t
h

e
b

as
el

in
e

ex
ec

u
ti

o
n

 t
im

e

Cluster Configurations

BIOS

OS

JVM

Hadoop

