
The introduction of PowerShell [3]
sees Microsoft finally implement
long overdue changes to Win-

dows scripting. Unfortunately, Power-
Shell Version 1 was no big help for Ac-
tive Directory (AD) administrators, but
then Microsoft added PowerShell sup-
port to its “Common Engineering Crite-
ria” (CEC), making it mandatory for all
Redmond products to support it. This
means Windows Server 2008 R2 and
Windows 7 now have PowerShell Ver-
sion 2 hard-wired.

Revamped PowerShell for
Active Directory
Microsoft developers have enhanced Ac-
tive Directory support with a PowerShell
provider and 76 additional cmdlets (say
“commandlets”). The provider lets you
change to an AD like changing a drive by
typing cd ad:. The cmdlets are an addi-
tional, optional instruction set that you
can use to manipulate individual Active
Directory objects.

Although a script-based approach is
possibly overkill for occasional work

with individual objects, it becomes es-
sential if you need to handle several
dozen or even thousands of objects. The
PowerShell is a .Net implementation and
thus object oriented throughout; objects
can be processed in a structured manner
through the use of pipes, removing the
need to search text-based output for spe-
cific content.

Administrators can manipulate the ob-
ject properties and methods directly. The
introduction of this powerful scripting
language is an important milestone for
the management of Windows systems,
whether clients or servers, and the appli-
cations installed on them.

Requirements
Not every Active Directory will support
the use of PowerShell. At least one of the
domain controllers (DCs) in the AD has
to run Windows Server 2008 R2. For
“legacy” systems based on Windows
Server 2003, Windows Server 2003 R2,
and Windows Server 2008, the Active Di-
rectory Management Gateway Service
[4] is available as a separate download.

After the installation, the Active Direc-
tory Web Services (ADWS) run on the

domain controller. To support ADWS,
you need to allow TCP port 9389 on the
domain controller running the service. If
you use a group policy object to config-
ure your firewall, you need to modify
your group policies to allow this port for
ADWS. The beta versions of the Gate-
way Service used a different port. Win-
dows PowerShell Version 2 must be in-
stalled.

If you have Windows Server 2008 R2
fulfilling the Active Directory Domain
Services role, the PowerShell module for
Active Directory is preinstalled. This
module is not installed on any other sys-
tems. Instead, the Remote Server Admin-
istration Tools (RSAT) module is used [5]
[6].

The version for Windows 7 not only
installs a full set of tools for GUI-based
administration, but also a full set of
PowerShell modules. Again, you need
PowerShell v2 installed.

The minimum requirement for install-
ing PowerShell is the .NET Framework
2.0. The PowerShell Integrated Scripting
Environment (ISE) requires version 3.51
of the frameworks. ISE is the internal ed-
itor for PowerShell. All you need now is
a user account with the required privi-
leges for the management work you

Professionally manage Active Directory users, groups, and other AD objects

with Windows PowerShell Version 2.0. By Rolf Masuch

Managing Active Directory at the command line

Ex-DirEctory

Fl
as

ho
n

St
ud

io
, 1

23
R
F.
co

m

Powershell for aDFeATuReS

want to perform, and you are up and
running.

Accessing Active Directory
To manipulate user-type objects with
PowerShell, you need a connection to
your Active Directory and the ActiveDi‑
rectory PowerShell. Via the Start menu or
ISE, launch a PowerShell console. To
load the module with the Import‑Module
cmdlet, use:

Import‑Module ActiveDirectory

Make sure ActiveDirectory has no em-
bedded blanks. If your computer is con-
nected to your Active Directory, the sys-
tem will display a new drive labeled
ad:. If the connection fails, a warning
displays. PowerShell displays warnings
in orange and errors in red.

If you want to connect to this drive, or
to another domain, see Listing 1. The
Get‑Credential cmdlet retrieves the cre-
dentials used to establish the connection
and stores it in the $cred variable. The
New‑PSDrive cmdlet establishes the con-
nection with the specified parameters.
The PSProvider switch specifies the pro-
vider on which to establish the drive.
The Name switch defines the name used
to reference the drive later. The default
here is AD, but you can change this to
suit your own needs. The next two
switches Root and Server define the
server you want to connect to and the
mountpoint, but more of that later. Fi-
nally, the Credential keyword passes in
the login information. Without these de-
tails, PowerShell uses the data for the
currently logged on user.

Because Active Directory is an LDAP
directory, PowerShell also supports the
functions and requirements of the LDAP
protocol. When you establish a connec-
tion, it displays all the partitions at the
topmost level, root. In the example here,
running the dir command gives you the
output in Listing 2.

To work with the typical tree structure,
you can use the cd command to change
to the domain partition. Alternatively,
you can specify the required partition di-
rectly with the Root parameter. This then
is your mountpoint. Before doing this,
you might want to change the drive.
When you specify the partition name,
you must use X.500 notation. The use of
canonical names, such as woodgrove‑

bank.com, is not currently supported.
The command

cd ad:

cd "DC=WoodgroveBank,DC=com"

changes to the required partition.

Working with user
Accounts
The ActiveDirectory module includes 76
cmdlets for Active Directory. To discover
the cmdlet useful for working with user
accounts, ask PowerShell for help. The
Get‑Command cmdlet supports a wild-
card search and the Type parameter to
provide a filter function:

get‑command *user* ‑type cmdlet | U

 format‑table ‑autosize

This query results in five cmdlets (List-
ing 3).

With the exception of the Get‑ADUser‑
ResultantPasswordPolicy cmdlet, which
performs a resulting set of policy (RSOP)

query against the password policies for a
user, you can use all of these cmdlets for
manipulating user objects. For example,
the New‑ADUser cmdlet adds a new user.
To change user properties, you would
choose Set‑ADUser. The New‑ADUser
command creates a new user account for
Mark Eting in the Marketing organiza-
tional unit (Listing 4). The Name option
passes in the value for a user’s Common‑
Name (CN). The display name is speci-
fied by the DisplayName switch. To ma-
nipulate the user object, you need to run
the Get‑ADUser cmdlet and store the ob-
ject in a variable:

$User = Get‑ADUser MarkEting U

 ‑Properties *

Then you can use the object’s individual
properties to access the values. For ex-
ample, $User.PasswordExpired checks to
see whether a user’s password has ex-
pired. User accounts can be deleted ei-
ther by passing in their unique names or
by piping. The Confirm option sup-

01 CommandType Name Definition

02 ‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑

03 Cmdlet Get‑ADUser Get‑ADUser ‑Filter <String> ...

04 Cmdlet Get‑ADUserResultantPasswordP... Get‑ADUserResultantPasswordP...

05 Cmdlet New‑ADUser New‑ADUser [‑Name] <String> ...

06 Cmdlet Remove‑ADUser Remove‑ADUser [‑Identity] <A...

07 Cmdlet Set‑ADUser Set‑ADUser [‑Identity] <ADUs...

Listing 3: Filtering Commands for *user*

01 $cred = Get‑Credential

02 New‑PSDrive ‑PSProvider ActiveDirectory ‑Name AD ‑Root ""

 ‑Server "nyc‑dc1.woodgrovebank.com" ‑Credential $cred

Listing 1: Access Active Directory

01 New‑ADUser ‑Name "Mark Eting" ‑SamAccountName "MarkEting" ‑GivenName "Mark"

 ‑Surname "Eting" ‑DisplayName "Mark Eting"

 ‑Path 'OU=Marketing,OU=NYC,DC=WoodgroveBank,DC=com'

 ‑OtherAttributes @{'msDS‑PhoneticDisplayName'="EtingMark"}

Listing 4: Create a New User

01 Name ObjectClass DistinguishedName

02 ‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑

03 WoodgroveBank domainDNS DC=WoodgroveBank,DC=com

04 Configuration configuration CN=Configuration,DC=WoodgroveBank,...

05 Schema dMD CN=Schema,CN=Configuration,DC=Wood...

06 DomainDnsZones domainDNS DC=DomainDnsZones,DC=WoodgroveBank...

07 ForestDnsZones domainDNS DC=ForestDnsZones,DC=WoodgroveBank...

Listing 2: AD LDAP Information

Fl
as

ho
n

St
ud

io
, 1

23
R
F.
co

m

FeATuReSPowershell for aD

WWW.ADmin-mAgAzine.com 7ADmin SPeciAL

presses the confirm dialog for the dele-
tion.

Remove‑ADUser MarkEting U

 ‑Confirm:$false

Get‑ADUser MarkEting | Remove‑ADUser U

 ‑Confirm:$false

Working with Groups
Just like the cmdlets for manipulating
user accounts, it makes sense to discover
the cmdlets for working with Active Di-
rectory groups. Again the Get‑Command

is a useful aid, but this time, use the
Module option to restrict the search to
cmdlets from this module. The results
are more extensive than for user ac-
counts (Listing 5).

The following command lists the
members of the NYC_MarketingGG
group by their CommonName:

Get‑ADGroupMember ‑Identity NYC_U

 MarketingGG | %{$_.Name}

The New‑ADGroup cmdlet is used to cre-
ate a new group. Don’t forget to specify

the ‑GroupType, or you will be con-
fronted with a dialog without options.
The supported values for this option are
Global, Universal, and DomainLocal.

New‑ADGroup ‑GroupScope DomainLocal U

 ‑Name NYC_all

Adding new members to existing groups
is also really easy. Just grab the required
user account with the Get‑ADUser cmd-
let and then pipe it to the Add‑ADGroup‑
Member cmdlet.

Get‑ADUser MarkEting | U

 %{Add‑ADGroupMember U

 NYC_MarketingGG $_}

It is simpler to specify the username di-
rectly in the call to the cmdlet:

Add‑ADGroupMember NYC_MarketingGG U

 MarkEting

The command for removing users from
groups is just as simple:

Remove‑ADGroupMember NYC_MarketingGG U

 MarkEting ‑confirm:$false

As with deleting a user, Confirm sup-
presses the confirmation dialog.

Managing Other Objects
Active Directory gives you many other
object types besides users and groups;
for example Computers, Organizational
Units (OUs), Group Policies, and so on.
To find the right cmdlets for these ob-

01 Get‑Command *group* ‑Module
ActiveDirectory

02

03 Name

04 ‑‑‑‑

05 Add‑ADGroupMember

06 Add‑ADPrincipalGroupMembership

07 Get‑ADAccountAuthorizationGroup

08 Get‑ADGroup

09 Get‑ADGroupMember

10 Get‑ADPrincipalGroupMembership

11 New‑ADGroup

12 Remove‑ADGroup

13 Remove‑ADGroupMember

14 Remove‑ADPrincipalGroupMembership

15 Set‑ADGroup

Listing 5: Commands
for *group*

Figure 1: In the MMC user interface, you can disable the delete request.

Figure 2: PowerGUI is one of the free editors with built-in PowerShell support.

Powershell for aDFeATuReS

8 WWW.ADmin-mAgAzine.comADmin SPeciAL

jects, you again need the Get‑Command
cmdlet with the appropriate wildcards.
The search keys here are *Computer*,
Org, *Policy*, or even *Server*. If you
don’t find a cmdlet for your task, you
can use the generic cmdlets for objects.
Note that these cmdlets might not have
such a rich selection of options as the
cmdlets optimized for special object
types. The search key for the generic cm-
dlets is *Object*, of course.

This search also returns the Re‑
store‑ADObject cmdlet, which restores
accidentally deleted objects. With the
Get‑ADObject cmdlet and its IncludeDe‑
letedObjects option, you can identify de-
leted objects and pipe them to Re‑
store‑ADObject, which restores the ob-
jects.

Organizational units have four cmd-
lets. To create an OU, use the New‑ADOr‑
ganizationalUnit cmdlet with the name
of the new OU. Remove‑ADOrganization‑
aUnit lets you delete an OU. Watch out
for the Active Directory version. If you
use Windows Server 2008, the new OU
will automatically be flagged Protect ob‑
ject from accidental deletion. To enable
this feature, you might need to go to the
MMC GUI in Active Directory Users and
Computers in the View menu’s Advanced
Features item. After doing so, you can
click the Object tab and remove the flag
(Figure 1). Until you have entered the
following, you will not be able to delete:

Remove‑ADOrganizationalUnit U

 ‑Identity 'OU=Marketing,OU=NYC,U

 DC=WoodgroveBank,DC=com'

Unfortunately, you can’t use the Confirm
switch here.

Summary
PowerShell Version 2 and the ActiveDi‑
rectory module finally bring Active Direc-
tory management to the command line.
PowerShell’s strict object orientation
makes it possible to manipulate ele-
ments in the Active Directory directly
and to use all the methods and proper-
ties of the objects in question. Whereas
other languages such as VBS previously

had to address each individual object
separately before manipulating it, a sim-
ple dir for a user OU in PowerShell will
output all the user objects in the OU so
that you can pipe them for ongoing pro-
cessing. The integrated ISE editor is a
useful tool to display scripts, your input,
and the resulting output.

The RSAT tool lets you perform all of
these tasks from a Windows-based client
system, in which you can set up your
personal scripting environment. This
could include more powerful editors
such as the free PowerGUI by Quest (Fig-
ure 2) [7] or the commercial PowerShell
Plus variant by Idera [8] or PrimalScript
by Sapien (Figure 3) [9]. At the end of
the day, PowerShell helps administra-
tors, especially in larger Active Directory
environments with large numbers of ob-
jects, manage their Active Directory with
less clicking, and the results are docu-
mented up front and more easily repro-
ducible thanks to scripting. n

Figure 3: PrimalScript is a commercial editor with built-in PowerShell support.

Rolf masuch works as a product man-
ager with ABSc gmbH. He has been a
microsoft certified Systems engineer
for Windows Server 2003, messaging
Specialist, and microsoft certified
Trainer since 1996. He is also a micro-
soft certified iT Professional for enter-
prise Desktop Administrator Win-
dows 7 and enterprise Administrator
Windows Server 2008. As the founder
of the german-language PowerShell
user group D/ A/ cH, Rolf is in a perfect
position to plumb the depths of the
command-line tool.

T
H

E
 A

U
T

H
O

R

[1] PowerShell community:
http:// powershellcommunity. org/

[2] PowerShell user group:
http://www.powershell-ag.de/ps

[3] Download PowerShell version 2.0:
http:// support. microsoft. com/ kb/
 968930

[4] Active Directory management gate-
way Service (Active Directory Web
Service for Windows Server 2003
and Windows Server 2008): http://
 www. microsoft. com/ downloads/
 details. aspx? displaylang=en&
 FamilyID=008940c6- 0296- 4597- be3e-
1d24c1cf0dda

[5] Remote Server Administration Tools
for Windows 7: http:// www.
 microsoft. com/ downloads/ details.
 aspx? familyid=7D2F6AD7-656B-431
3-A005-4E344E43997D&
 displaylang=en

[6] Description of Remote Server Ad-
ministration Tools for Windows 7:
http:// support. microsoft. com/ kb/
 958830/ en-us

[7] PowergUi: http:// powergui. org/
 downloads. jspa

[8] PowerShell Plus:
http:// powershellplus. com/

[9] PrimalScript:
http:// www. primaltools. com/
 products/ info. asp? p=PrimalScript

INFO

FeATuReSPowershell for aD

WWW.ADmin-mAgAzine.com 9ADmin SPeciAL

