
B
trfs [1] is a next-generation file-
system destined to become the
default filesystem of many fu-
ture Linux distribution releases.

Btrfs, initially developed by Oracle, is li-
censed under the General Public License
(GPL) Version 2 and was accepted into
the mainline Linux kernel as of 2.6.29-
rc1. Btrfs is an acronym for B-tree file-
system, but the word is usually pro-
nounced “Butter FS.” The innovative

Btrfs filesystem was partly inspired by
Sun Microsystem’s (now Oracle) ZFS
filesystem, which has never officially
been ported to the Linux kernel because
of licensing conflicts between the Com-
mon Development and Distribution Li-
cense (CDDL) and the GPL.

Btrfs is known as a Copy-On-Write
(COW) filesystem. When data is modi-
fied, it is never modified in place. A new
data block or series of data blocks are al-
located to store the new data. This con-
cept helps Btrfs support enhanced fea-
tures, such as snapshots and subvol-
umes. A volume can refer to one or mul-
tiple grouped disk devices or partitions.

The Btrfs filesystem provides the capa-
bilities for pooling drives together into a
single and (if specified) redundant RAID
volume; dynamic volume resizing; on-
line defragmentation, checksumming,
and compression; and more. Although
still feature incomplete, Btrfs is enabled
in a default vanilla kernel configuration
and is officially supported in various
Linux distributions, including Fedora
and Ubuntu. If you are using a system
that does not offer Btrfs support, you
need to rebuild the Linux kernel to en-
able Btrfs and build the btrfs-progs tool
kit to manage it.

In this article, I look at how to create
and manage a Btrfs filesystem. Along the
way, you’ll get a glimpse at some of the
advanced features exciting the experts.
However, keep in mind that Btrfs is rela-
tively new and still a work in progress.
(See the box titled “Errors and fsck.”)

The Management Utility
At the time of this writing, Btrfs is not a
bootable filesystem; therefore, it cannot
host the /boot path, where all kernel and
boot images reside.

The two main utilities you’ll need to
create and manage a Btrfs volume are
mkfs.btrfs(8) and btrfs(8). (Many
Btrfs guides also refer to btrfsctl, an
older tool that has now been replaced by
btrfs.) The btrfs utility is a general-pur-
pose tool you can use to manage Btrfs-
enabled volumes to monitor usage, cre-
ate subvolumes and snapshots, create
new volumes, add and remove devices
from existing volumes, and enable on-
line defragmentation and volume bal-
ancing.

For instance, if you are logging into a
Linux system and you want to learn
whether the system contains any Btrfs-
labeled devices, you could type the fol-
lowing command:

$ sudo btrfs device scan

To discover all multidevice filesystems
on the machine, you will have to execute
this command after rebooting or reload-

The Btrfs wiki [1] contains the following
warning:
Note that Btrfs does not yet have a fsck
tool that can fix errors. While Btrfs is sta-
ble on a stable machine, it is currently
possible to corrupt the filesystem irre-
coverably if your machine crashes or
loses power on disks that don’t handle
flush requests correctly. This will be
fixed when the fsck tool is ready.

 Errors and fsck

$ sudo btrfs filesystem show

Label: none uuid: f2346c58‑64fd‑42a5‑afdb‑10e9e134d0a1

 Total devices 1 FS bytes used 2.40GB

 devid 1 size 7.64GB used 4.60GB path /dev/sda6

 LisTing 1: Listing Btrfs filesystems

Features
Btrfs

March 2011 Issue 124 lInux-MagazIne.coM | lInuxproMagazIne.coM 32

Managing storage volumes with Btrfs

Smooth
as Butter

Btrfs is winning over the experts with advanced features like

subvolumes, snapshots, and dynamic volume resizing.

 By Petros Koutoupis

ing the btrfs module. To list device
types (Listing 1), use:

$ sudo btrfs filesystem show

creating a new Volume
To use the new Btrfs filesystem, format
and label a volume consisting of one or
more disk devices or partitions. Creating
a new Btrfs-enabled volume is quite sim-
ple. To create a single disk volume, type:

$ sudo mkfs.btrfs /dev/sdb

To stripe across multiple disk devices,
type the following command, listing all
the disk devices.

$ sudo mkfs.btrfs /dev/sdb U

 /dev/sdc /dev/sdd

(For Btrfs RAID options, see the box ti-
tled “Btrfs and RAID.”) In Listing 2,
mkfs.btrfs configures the drives to mir-

ror the metadata across all disk devices
and stripe the data across all disk de-
vices. To stripe both the metadata and
data (i.e., no mirroring), type:

$ sudo mkfs.btrfs ‑m raid0 U

 /dev/sdb /dev/sdc /dev/sdd

To mirror both metadata and file data
across all attached disk devices, use:

$ sudo mkfs.btrfs ‑m raid10 ‑d raid10 U

 /dev/sdb /dev/sdc /dev/sdd /dev/sde

After you create a new Btrfs volume, a
new entry is appended to the list of Btrfs
filesystems on the machine. To list all
Btrfs filesystems and which devices they
include, use the btrfs command. You
will notice the newly created Btrfs vol-
ume (Listing 3).

To read and write, you’ll need to
mount the volume from any of the block
device node names specified when the
volume was created. Listings 3 and 4 use
/dev/sdb to signify the entire volume.

adding and removing a
device
One of the best features of the Btrfs file-
system is being able to add or remove

disk devices dynamically from an exist-
ing pool. If you have a failed disk device,
or a disk device to use someplace else,
remove the device with:

$ sudo btrfs device delete /dev/sdd /mnt/

When you invoke the filesystem show
option, the btrfs utility will show that a
device is missing (Listing 5).

To add a disk device, use:

$ sudo btrfs device add /dev/sdd /mnt/

Listing 6 shows the updated listing of the
filesystem.

At this point, the filesystem includes
three devices, but all the metadata and
data are still stored on /dev/sdb and /
dev/sdc. Now you need to balance the
filesystem and spread the files across all
of the devices. The whole concept of bal-
ancing re-stripes the allocated extents
across all of the existing devices.

$ sudo btrfs filesystem balance /mnt/

leading to the configuration in Listing 7.
The balancing operation will take

some time because it requires that all of
the filesystem data and metadata are

$ sudo mkfs.btrfs /dev/sdb /dev/sdc /dev/sdd

WARNING! ‑ Btrfs Btrfs v0.19 IS EXPERIMENTAL

WARNING! ‑ see http://btrfs.wiki.kernel.org before using

adding device /dev/sdc id 2

adding device /dev/sdd id 3

fs created label (null) on /dev/sdb

 nodesize 4096 leafsize 4096 sectorsize 4096 size 6.00GB

 LisTing 2: formatting Multiple disk devices

RAID (Redundant Array of Independent
Disks) is a method by which multiple inde-
pendent hard disk drives attached to a
computer appear as a single disk. Depend-
ing on the RAID type, performance can im-
prove dramatically, especially as you
stripe/ balance the data across multiple
disks, thus removing the bottleneck of a
single disk for write/ read operations.

Most RAID algorithms offer a form of re-
dundancy that can withstand a finite num-
ber of disk failures. When a disk fails in a
redundant array, the array will operate in a
degraded mode until it is recovered. The
technology is capable of rebuilding itself to
a point before the failure. Numerous RAID

types exist. To date, Btrfs officially supports
RAID 0, RAID 1, and RAID 10, and it can
also duplicate metadata on a single disk. A
patch does exist to add support for RAID 5
and RAID 6, but it hasn’t been officially
merged into the project.

A RAID 0 array stripes data, interleaving
across all drives in the array by writing in a
round-robin fashion. Both read and write
operations access the data the same way.
Writing or reading the data concurrently
across several disks takes less time than
writing it all to one disk, which means that
a RAID 0 system can dramatically improve
performance, but RAID 0 offers no form of
redundancy. If a hard disk drive in the array

were to fail, the entire array fails. In a RAID
1 (disk mirroring) array, one hard disk
stores an exact replica of another hard
disk. If one drive fails, the second steps in
and resumes where the first left off. Overall
drive performance is consistent with the
performance of a single disk. In some RAID
1 implementations, read performance is
tuned to achieve faster speeds through a
mechanism known as read-balancing.
Read-balancing provides the ability to re-
trieve data from both disks in the mirror.

The hybrid RAID 10 uses striping of mir-
rored sets. Figure 1 shows an example of
how data is written in chunks across multi-
ple disk devices in a RAID volume.

 BTrfs and raid

Figure 1: A general layout showing how data

is striped across a RAID 0 volume and how

data is mirrored across a RAID 1 volume.

Features
Btrfs

lInux-MagazIne.coM | lInuxproMagazIne.coM Issue 124 March 2011 33

read and rewritten across the full array,
including across the newly added device.

subvolumes and Volume
snapshots
A single Btrfs volume can contain multi-
ple subvolumes. If you define a subvol-
ume as the “default” for the volume,
when it is mounted, the subvolume is
presented as root; you can even mount a
subvolume when the parent volume is
not mounted. Each subvolume can oper-
ate as an independent filesystem. In
Btrfs, all the storage is in the “pool,” and
subvolumes are created from the pool –
you do not need to partition anything.
As long your storage capacity hold out,
you can create as many subvolumes as
you want. To create a subvolume, type:

$ sudo btrfs subvolume create /mnt/subvol

Create subvolume '/mnt/subvol'

To verify that the subvolume exists in
the root of the Btrfs volume, use the list
option:

$ sudo btrfs subvolume list /mnt

ID 256 top level 5 path subvol

Listing 8 shows the contents from the
root of the filesystem.

If you want to set a specific subvol-
ume as the default of the volume when
it is mounted, you need to obtain the
subvolume ID (as seen in the preceding
command) and invoke the btrfs utility
with the following options:

$ sudo btrfs subvolume U

 set‑default 256 /mnt

Alternatively, you can mount the subvol-
ume under a separate directory path:

$ sudo mount ‑t btrfs ‑o subvol=subvol U

 /dev/sdb /subvol

Although you might think the data snap-
shot is a subvolume, it differs in imple-
mentation. A snapshot is a single state of
a storage volume at a particular point in
time. Snapshots are usually used for data
archiving. Most traditional volume man-
agers require that the snapshot be taken
across the entire logical volume. Btrfs,
on the other hand, lets you create snap-
shots on individual files or entire direc-
tories anywhere in the Btrfs volume. (Re-

member, this is all made possible by the
COW design of the Btrfs filesystem.) To
see how the snapshot process works,
start by creating a file with touch or dd
(Listing 9).

Now that you have a file, you can cre-
ate a snapshot of the filesystem root:

$ sudo btrfs subvolume snapshot U

 /mnt /mnt/snapshot_of_root

A listing of all subvolumes for the Btrfs
filesystem will now have the snapshot
appended to it:

$ sudo btrfs subvolume list /mnt

ID 256 top level 5 path subvol

ID 257 top level 5 path snapshot_of_root

A listing of the contents of the newly
created snapshot will display an image
of what the root of the Btrfs volume
looked like when the snapshot was
taken, with the exception of the snap‑
shot subvolume directory (Listing 10).

Now create a new file at the root of the
volume. The snapshot will still preserve
the original data at the time it was taken
(see the comparison in Listing 11).

To mount the newly created snapshot
to a separate directory path, use:

$ sudo mkdir /btrfs_snapshot

$ sudo mount ‑t btrfs ‑o subvol=U

 snapshot_of_root U

 /dev/sdb /btrfs_snapshot/

Full backups of an entire volume can
take a long time and use large amounts
of storage space, even for files that re-
main unchanged. Also, when perform-
ing a data backup of entire volumes or
subsets of volumes in a symmetric multi-
processing environment, write opera-
tions might continue to modify the file
data on that volume, with the possibility
of data corruption. Several strategies
provide some protection. For instance,
the volume can be taken offline or
marked as read-only before the archival
process, but in high-availability produc-
tion environments, this approach might
not be practical.

A snapshot provides a more complete
solution. You can use a snapshot to
avoid downtime and retain atomicity
when archiving entire files, directories,
or filesystems. In a production environ-
ment, it is not uncommon for a system

$ sudo btrfs filesystem show

Label: none uuid: f2346c58‑64fd‑42a5‑afdb‑

10e9e134d0a1

 Total devices 1 FS bytes used 2.40GB

 devid 1 size 7.64GB used 4.60GB path /dev/sda6

Label: none uuid: 0fa5bbee‑6f69‑4d10‑a316‑ac373e8b5f64

 Total devices 3 FS bytes used 28.00KB

 devid 1 size 2.00GB used 531.94MB path /dev/sdb

 devid 2 size 2.00GB used 212.75MB path /dev/sdc

 devid 3 size 2.00GB used 519.94MB path /dev/sdd

 LisTing 3: a new Btrfs filesystem

$ sudo mount /dev/sdb /mnt/

$ df ‑t btrfs

Filesystem 1K‑blocks Used Available Use% Mounted on

/dev/sda6 8011776 2745480 5266296 35% /

/dev/sdb 6291456 56 6291400 1% /mnt

 LisTing 4: Mounting and Verifying

$ sudo btrfs filesystem show /dev/sdb

Label: none uuid: 0fa5bbee‑6f69‑4d10‑a316‑ac373e8b5f64

 Total devices 3 FS bytes used 36.00KB

 devid 1 size 2.00GB used 156.00MB path /dev/sdb

 devid 2 size 2.00GB used 136.00MB path /dev/sdc

 *** Some devices missing

 LisTing 5: after removing a device

Features
Btrfs

March 2011 Issue 124 lInux-MagazIne.coM | lInuxproMagazIne.coM 34

administrator to create a scheduled cron
job to create hourly, daily, weekly, or
monthly snapshots of various files and
directories, including the end user’s
home directory. That way, the admin can
retrieve a recently modified or deleted
file with few or no headaches for all par-
ties involved.

To delete a subvolume, type:

$ sudo btrfs subvolume delete /mnt/subvol

When listing all subvolumes of the par-
ent volume, you will notice that the re-

cently deleted subvolume will not be
listed:

$ sudo btrfs subvolume list /mnt

ID 257 top level 5 path snapshot_of_root

To delete a snapshot subvolume use:

$ sudo btrfs subvolume delete U

 /mnt/snapshot_of_root/

resizing a Volume
Unlike many filesystem alternatives,
Btrfs lets you dynamically resize an ex-

isting volume. This feature is still some-
what limited and needs more time to
mature, but it is still useful for some en-
vironments. If you want to decrease the
size of a volume from 6 to 5GB, type:

$ sudo btrfs filesystem resize ‑1G /mnt/

Resize '/mnt/' of '‑1G'

Now the volume is 5GB in size (see List-
ing 12). To return the filesystem to 6GB,
type:

$ sudo btrfs filesystem resize +1G /mnt/

Resize '/mnt/' of '+1G'

If you want to use the maximum size of
the volume, type:

$ sudo btrfs filesystem resize max /mnt

Listing 13 shows the df output after re-
sizing back to 6GB (the volume’s maxi-
mum capacity).

The current limitation, I find, is that
the Btrfs module won’t let you resize a
subvolume without affecting the size of
the parent volume. For instance, if the
parent volume is mounted at /mnt and
the subvolume is mounted at /subvol, if
I attempt to decrease the size of the sub-
volume to leave more space to create a
new subvolume in the future, the parent
volume also decreases in total size (List-
ing 14). Btrfs doesn’t let me keep the
parent volume constant and liberate
space by shrinking a subvolume. I imag-
ine this problem will be addressed in the
near future as Btrfs matures.

commands and
configurations
For man pages for both the mkfs.btrfs
and btrfs utilities, at the command line
enter:

$ man 8 btrfs

Although I mainly relied on the df com-
mand to monitor the filesystem’s overall
size and usage, the btrfs tool has its
own built-in version that conveniently
displays more detailed usage of the de-
sired filesystem.

$ btrfs filesystem df /

Data: total=3.06GB, used=2.24GB

Metadata: total=783.19MB, used=220.93MB

System: total=12.00MB, used=4.00KB

$ sudo btrfs filesystem show /dev/sdb

Label: none uuid: 0fa5bbee‑6f69‑4d10‑a316‑ac373e8b5f64

 Total devices 3 FS bytes used 36.00KB

 devid 1 size 2.00GB used 156.00MB path /dev/sdb

 devid 2 size 2.00GB used 136.00MB path /dev/sdc

 devid 3 size 2.00GB used 0.00 path /dev/sdd

 LisTing 6: after adding a device

$ sudo btrfs filesystem show /dev/sdb

Label: none uuid: 0fa5bbee‑6f69‑4d10‑a316‑ac373e8b5f64

 Total devices 3 FS bytes used 36.00KB

 devid 1 size 2.00GB used 352.75MB path /dev/sdb

 devid 2 size 2.00GB used 204.75MB path /dev/sdc

 devid 3 size 2.00GB used 340.75MB path /dev/sdd

 LisTing 7: after rebalancing

$ ls ‑l /mnt/

total 0

drwx‑‑‑‑‑‑ 1 root root 0 2010‑12‑29 15:51 subvol

 LisTing 8: Listing the contents

$ sudo dd if=/dev/zero of=/mnt/test.dat count=4

4+0 records in

4+0 records out

2048 bytes (2.0 kB) copied, 0.000383095 s, 5.3 MB/s

$ ls /mnt/

subvol test.dat

 LisTing 9: creating a Test file

$ ls ‑l /mnt/snapshot_of_root/

total 2

drwxr‑xr‑x 1 root root 0 2010‑12‑29 15:57 subvol

‑rw‑r‑‑r‑‑ 1 root root 2048 2010‑12‑29 15:54 test.dat

$ ls ‑l /mnt/

total 6

dr‑xr‑xr‑x 1 root root 60 2010‑12‑29 15:54 snapshot_of_root

drwx‑‑‑‑‑‑ 1 root root 0 2010‑12‑29 15:51 subvol

‑rw‑r‑‑r‑‑ 1 root root 2048 2010‑12‑29 15:54 test.dat

 LisTing 10: snapshot comparison

Features
Btrfs

March 2011 Issue 124 lInux-MagazIne.coM | lInuxproMagazIne.coM 36

$ btrfs filesystem df /mnt/

Data: total=614.25MB, used=0.00

Metadata: total=128.00MB, used=32.00KB

System: total=12.00MB, used=4.00KB

As mentioned earlier, Btrfs supports on-
line defragmentation. (Note that defrag-
ging takes longer on larger and more
data-occupied volumes.) To defragment
a volume, type:

$ sudo btrfs filesystem defragment /mnt/

As with any other Linux filesystems,
Btrfs also supports mounting a Btrfs vol-
ume with one or more mount options.
For instance, to disable checksumming
CRC-32C while enabling zlib compres-
sion, you need to type:

$ sudo mount ‑t btrfs ‑o U

 nodatasum,compress /dev/ sdb /mnt/

Btrfs also contains optimizations for the
popular Flash-based Solid State Disk

(SSD). To enable the SSD optimizations,
mount with the ‑o ssd option.

Note that, as of v2.6.31-rc1, this
mount option will be enabled if Btrfs is
able to detect non-rotating storage. The
SSD is going to play a large part in the
future of data storage, and it is nice to
observe that the Btrfs developers have
been preparing for its arrival. See the
Btrfs wiki page for a full listing of mount
options [2].

One last thing worth mentioning is
that, if you want to add an entry into the
/etc/fstab file to mount the Btrfs vol-
ume at system bootup, you can do so by
entering a new line specifying one of the
devices, the mount point, the filesystem,
and a list of all the devices and options:

/dev/sdb /mnt btrfs U

 device=/dev/sdb,device=/dev/sdc,U

 device=/dev/sdd,U

 device=/dev/sde 0 0

Or, you can use the UUID (as it is dis-
played in the output of the btrfs file‑
system show command) followed by the
traditional fstab field entries (Listing 15).

summary
The next-generation Linux filesystem is
full of great features and functionality if
you take the time to get used to the
tools. Although Btrfs is still feature in-
complete, the filesystem provides amaz-
ing flexibility. As Btrfs evolves [3], you
can expect to find official support for
RAID 5 and RAID 6, online filesystem in-
tegrity checks, and support for data de-
duplication (an ideal solution in virtual-
ization environments). nnn

$ ls ‑l /mnt/

total 10

dr‑xr‑xr‑x 1 root root 60 2010‑12‑29 15:54 snapshot_of_root

drwx‑‑‑‑‑‑ 1 root root 0 2010‑12‑29 15:51 subvol

‑rw‑r‑‑r‑‑ 1 root root 2048 2010‑12‑29 15:59 test_again.dat

‑rw‑r‑‑r‑‑ 1 root root 2048 2010‑12‑29 15:54 test.dat

$ ls ‑l /mnt/snapshot_of_root/

total 2

drwxr‑xr‑x 1 root root 0 2010‑12‑29 15:57 subvol

‑rw‑r‑‑r‑‑ 1 root root 2048 2010‑12‑29 15:54 test.dat

 LisTing 11: Updated comparison

$ df ‑t btrfs

Filesystem 1K‑blocks Used Available Use% Mounted on

/dev/sda6 8011776 2804768 5207008 36% /

/dev/sdb 8388608 80 8388528 1% /mnt

/dev/sdc 8388608 80 8388528 1% /subvol

$ sudo btrfs filesystem resize ‑1G /mnt/subvol/

Resize '/mnt/subvol/' of '‑1G'

$ df ‑t btrfs

Filesystem 1K‑blocks Used Available Use% Mounted on

/dev/sda6 8011776 2804768 5207008 36% /

/dev/sdb 7340032 80 7339952 1% /mnt

/dev/sdc 7340032 80 7339952 1% /subvol

 LisTing 14: resizing a subvolume

$ df ‑t btrfs

Filesystem 1K‑blocks Used Available Use% Mounted on

/dev/sda6 8011776 2804452 5207324 36% /

/dev/sdb 5242880 72 5242808 1% /mnt

 LisTing 12: df output

01 UUID‑0fa5bbee‑6f69‑4d10‑a316‑ac373e8b5f64 /mnt btrfs defaults 0 0

 LisTing 15: UUid and fstab field Entries

$ df ‑t btrfs

Filesystem 1K‑blocks Used Available Use% Mounted on

/dev/sda6 8011776 2804456 5207320 36% /

/dev/sdb 6291456 72 6291384 1% /mnt

 LisTing 13: after resizing

[1] Btrfs wiki:
https:// btrfs. wiki. kernel. org/

[2] Btrfs mount options:
https:// btrfs. wiki. kernel. org/ index.
 php/ Getting_started# Mount_Options

[3] Wikipedia on Btrfs:
http:// en. wikipedia. org/ wiki/ Btrfs

 info

Petros Koutoupis is a full-time Linux ker-
nel, device driver, and application devel-
oper for embedded and server platforms.
He has worked in the data storage indus-
try for more than six years and enjoys
discussing storage technologies.

 aUThor

Features
Btrfs

March 2011 Issue 124 lInux-MagazIne.coM | lInuxproMagazIne.coM 38

