77%
30.11.2025
14
15 v=0
16 o=alice 53655765 2353687637 IN IP4
20.22.24.27
17 s=-
18 t=0 0
19 c=IN IP4 20.22.24.27
20 m=audio 20333 RTP/AVP 0 1 3 99
21 a=rtpmap:0 PCMvU/8000
The RTP port causes the next issue
77%
30.11.2025
"------------------------------------------------------"
18 echo -n "Replace stored data line (y)? ";read we
19 if [ "$we" = "y" ];
20 then
21
22 # Delete line and write to
23 # temporary file
24
25 # Build sed instruction
26
77%
30.11.2025
that belong to $ASTRUNDIR,
22 # kill them.
23 if [ "$astcanary_pid" ]; then
24 for i in $astcanary_pid; do ocf_run kill -s KILL $astcanary_pid; done
25 fi
26
27 for dir in $ASTRUNDIR
77%
30.11.2025
output/images/rootfs.ext2 -append "root=/dev/sda rw" -s -S &
6. Launch the debugger:gdbDebugger session:file vmlinuxtarget remote :1234continue
7. Log in, load the driver, and identify the memory
77%
30.11.2025
. In the test scenario, I defined a backup schedule with the following settings:
Schedule: weekly
Daily full backup: Monday – Friday 20:00
Daily incremental backup: Monday – Friday 08:00--18:00, 30
77%
30.11.2025
.network.type = veth
04 lxc.network.flags = up
05 lxc.network.link = br0
06 lxc.network.hwaddr = 08:00:12:34:56:78
07 #lxc.network.ipv4 = 0.0.0.0
08 lxc.network.ipv4 = 192.168.1.69
09 lxc.network.name = eth0
10 lxc
76%
07.01.2025
SC24 took place in Atlanta, GA, November 17-22. As I'm writing this, 17,959 attendees – that’s 3,000+ more than last year – registered. More than 500 companies filled the exhibition floor, which
76%
30.11.2025
-local
04 bash#>
05 bash#> pkgadd -d tcp_wrappers-7.6-sol10-sparc-local
06
07 The following packages are available:
08 1 SMCtcpdwr tcp_wrappers
09 (sparc) 7.6
10
11 Select package(s
76%
26.01.2025
to give you a year of updates and unlimited use for approximately $22 (EUR22, £18). This extended version also lets you save the log data and displays the results as simple graphics. The interface is more
76%
26.01.2025
this second 2D convolution layer, you have another batch normalization layer followed by a new layer type, MaxPooling2D:
model.add(layers.BatchNormalization())
model.add(layers.MaxPooling2D(pool_size=(2,2