100%
02.08.2021
14000NM0001 K001
Supported log pages [0x0]:
0x00 Supported log pages [sp]
0x02 Write error [we]
0x03 Read error [re]
0x05 Verify error [ve]
0x06
94%
25.03.2021
=libaio, iodepth=32
fio-3.12
Starting 1 process
Jobs: 1 (f=1): [w(1)][100.0%][w=1420KiB/s][w=355 IOPS][eta 00m:00s]
test: (groupid=0, jobs=1): err= 0: pid=3377: Sat Jan 9 15:31:04 2021
write: IOPS=352, BW=1410Ki
94%
20.05.2014
values to f(x); each list item in l results in a separate job.
Listing 1
Joblib: Embarrassingly Parallel
01 from joblib import Parallel, delayed
02
03 def f(x):
04 return x
05
06 l ... A Library for Many Jobs
93%
13.12.2018
a queue of pending work."
These three points are the classic functions of a resource manager (job scheduler), and Slurm does them well.
Slurm is very extensible, with more than 100 optional plugins ... One way to share HPC systems among several users is to use a software tool called a resource manager. Slurm, probably the most common job scheduler in use today, is open source, scalable, and easy ... Slurm Job Scheduling System
93%
04.04.2023
47 k
pixman x86_64 0.38.4-2.el8 appstream 256 k
slurm-contribs-ohpc x86_64 22.05.2-14.1.ohpc.2.6 OpenHPC-updates 22 k
slurm
93%
27.09.2021
counter = 1,counter_limit
25 my_record%x = counter
26 my_record%y = counter + 1
27 my_record%z = counter + 2
28 my_record%value = counter * 10.0
29
93%
21.08.2014
04 address 192.168.0.100
05 check_command check-host-alive
06 contact_groups contacts
07 use check_5min_24x7
92%
28.11.2021
service downtimes:
Listing 3
Alerting Rules
01 groups:
02 - name: Web application alerts
03 rules:
04 - alert: target_server root disk partion is getting full
05 expr: 100 - ((node_filesystem_avail_bytes{job
92%
28.06.2011
1084 image- store- 1299616369/image.manifest.xml admin available public x86_64 machine eki- F7901106 eri- 0C0D116C
05 IMAGE eki- F61410F1 image- store- 1299616170/kernel
91%
26.01.2025
.add(layers.BatchNormalization())
model.add(layers.Conv2D(64, (3,3), padding='same', activation='relu'))
model.add(layers.BatchNormalization())
model.add(layers.MaxPooling2D(pool_size=(2,2)))
model.add(layers.Dropout(0.5))
input