14%
17.02.2015
:
Tegra X1:
25.6GBps memory bandwidth
HDMI 2.0 and HDCP 2.2
10W power
Peak performance: 1,024GFLOPS with FP16; 512GFLOPS with FP32
ARM Cortex CPUs:
Quad-core 64-bit ARM Cortex-A57
14%
28.11.2023
notify_after: 2
19 notify_all_changes: true
20 public: true
21 redirect: true
22
23 x-icmping: &icmping
24 type: icmp
25 check_interval: 60
26 timeout: 15
27 allow_notifications: true
28
14%
02.08.2021
Non medium [nm]
0x08 Format status [fs]
0x0d Temperature [temp]
0x0e Start-stop cycle counter [sscc]
0x0f Application client [ac]
0x10 Self test
14%
22.12.2017
~ /.well-known {
13 allow all;
14 }
15
16 location / {
17 rewrite ^/(.*)$ https://www.linux-magazin.de/$1 permanent;
18 rewrite ^/$ https://www.linux-magazin.de/ permanent;
19 }
20 }
21
22
14%
28.06.2011
0000 / 0000 2 512 10
07 AVAILABILITYZONE |- m1.xlarge 0000 / 0000 2 1024 20
08 AVAILABILITYZONE |- c1.xlarge 0000 / 0000 4 2048 20
Making Images
14%
16.05.2013
://wiki.scilab.org/Linalg%20performances
Compiling
http://wiki.scilab.org/Compiling%20Scilab%205.x%20under%20GNU-Linux%20Unix
Parallel computing
http
14%
30.11.2025
, to monitoring and controlling complete systems.
Identifying Services
OpenNMS can automatically identify the services you need to monitor. In versions up to 1.8.x, this task is handled by the capabilities daemon
14%
26.01.2025
.DevCenter/devcenters/attachednetworks@2024-02-01' = {
18 name: networkConnection.name
19 parent: devcenter
20 ... }
21
22 resource devcenterGalleryImage 'Microsoft.DevCenter/devcenters/galleries/images@2024-02-01' existing = {
23
14%
03.12.2024
, MaxPooling
2D
:
model.add(layers.BatchNormalization())
model.add(layers.MaxPooling2D(pool_size=(2,2)))
A max pooling layer has a pool size, 2x2 in this case, that is used to scan the entire input image (left
14%
26.01.2025
version isn't even 3.x. I haven't tested the code with Keras 3.x yet, so your mileage may vary if you go that route.
CIFAR-10
The model and dataset I use is CIFAR-10 [6]. It is a very common dataset