23%
02.08.2022
._tcp.mykier.ip,ipa.mykier.ip,389
A Berkeley Internet Name Domain (BIND) 9 DNS server needs the same entries, but in a different format:
_kerberos._udp.mykier.ip. 86400 IN SRV 0 100 88 ipa.mykier.ip.
[...]
The important
23%
30.11.2025
CPU PROCESS/NLWP
# 173 daemon 17M 11M sleep 59 0 3:18:42 0.2% rcapd/1
# 17676 apl 6916K 3468K cpu4 59 0 0:00:00 0.1% prstat/1
# ...
# ZONEID NPROC SWAP RSS MEMORY TIME
23%
05.12.2014
_domain": "yourdomain.com",
06 "dataset_uuid": "d34c301e-10c3-11e4-9b79-5f67ca448df0",
07 "resolvers": [
08 "192.128.0.9",
09 "192.128.0.10"
10 ],
11 "max_physical_memory": 4096,
12 "nics": [
13
23%
15.04.2013
.1, do not improve on this; it is not until TLS 1.2 that TLS began to support newer algorithms with SHA-2.
On the server side, you need version 1.0.1 of OpenSSL to enable TLS 1.2, for example
23%
20.08.2012
the port after the file transfer has completed (but not without moving to the netcat-traditional
package, as mentioned before):
{ echo -ne "HTTP/1.0 200 OK\r\n\r\n"; cat filename.tar.gz; } | nc -l -p 15000
23%
30.11.2025
-type traffic, as well as for the local link address (i.e., good old 127.0.0.1).
Getting IPv6 Connectivity
You can get IPv6 connectivity in several ways: native IPv6 access, IPv6 tunnels, Teredo (Miredo on Unix
23%
02.08.2022
.
Listing 1
Samsara Syntax Examples
val G = B %*% B.t - C - C.t + (xi dot xi) * (s_q cross s_q)
// Dense vectors:
val denseVec1: Vector = (1.0, 1.1, 1.2)
val denseVec2 = dvec(1, 0, 1, 1, 1, 2
23%
25.01.2017
) :: a[*] ! Array coarray
real, dimension(n), codimension[*] :: a ! Array coarray
integer :: cx[10,10,*] ! scalar coarray with corank of 3
! Array coarray with corank of 3 with different cobounds
real :: c(m,n) :: [0
23%
11.06.2014
/joe/.ssh/google_compute_engine -A -p 22 joe@1.2.3.4 --
11 Warning: Permanently added '1.2.3.4' (ECDSA) to the list of known hosts.
12 Enter passphrase for key '/home/joe/.ssh/google_compute_engine':
13 Linux gcerocks-instance-1 3.2.0
23%
02.06.2020
optimizer = tf.keras.optimizers.RMSprop(0.001)
11 model.compile(loss='mean_squared_error',
12 optimizer=optimizer,
13 metrics=['mean_absolute_error', 'mean_squared_error'])
The model is shown