13%
04.04.2023
x86_64 2.9.1-9.el8 baseos 393 k
groff-base x86_64 1.22.3-18.el8 baseos 1.0 M
hwloc-ohpc x86_64 2.7.0-3
13%
17.01.2023
86_64 2.9.1-9.el8 baseos 393 k
groff-base x86_64 1.22.3-18.el8 baseos 1.0 M
hwloc-ohpc x86_64 2.7.0-3
13%
30.11.2020
the code is straightforward:
$ mpirun -n 4 -f ./hosts python3 trap-mpi4py.py
Another sample problem (Listing 8) integrates x
^2 over the interval from 0.0 to 2.0. The output contains information about what
13%
17.02.2015
MinnowBoard Max
Linux, Windows 8.1
Intel E3825
Dual x86 ATOM, 64-bit @1.33GHz (1MB L2)
Intel Graphics @533MHz
2GB DDR3L
GigE Ethernet, USB 2.0, USB 3
13%
06.05.2024
Kickstart that raised more than EUR1 million (>$840K). The blades themselves are 255x42.5x17.5mm (length x height x thickness, or roughly 10x1.67x0.7 inches).
Figure 3
13%
01.08.2012
Dependency: libc.so.6(GLIBC_2.1.3) for package: open64-5.0-0.x86_64
--> Processing Dependency: libc.so.6(GLIBC_2.2) for package: open64-5.0-0.x86_64
--> Processing Dependency: libc.so.6(GLIBC_2.2.3 ...
Warewulf 3 open64 code
13%
17.05.2017
, ALLOCATABLE, TARGET :: DATA(:,:) ! Data to write
18 INTEGER :: RANK = 2 ! Dataset rank
19
20 CHARACTER(MPI_MAX_PROCESSOR_NAME) HOSTNAME
21 CHARACTER(LEN=100) :: FILENAME ! File name
22 CHARACTER(LEN=3) :: C
13%
30.01.2024
Dell Precision Workstation T7910
Power
1,300W
CPU
2x Intel Xeon Gold E5-2699 V4, 22 cores, 2.4GHz, 55MB of cache, LGA 2011-3
GPU, NPU
n/a*
Memory
13%
02.08.2021
%util
sda 10.91 6.97 768.20 584.64 4.87 18.20 30.85 72.31 13.16 20.40 0.26 70.44 83.89 1.97 3.52
nvme0n1 58.80 12.22 17720.47 48.71 230
13%
01.06.2024
is 20x because only 95 percent of the algorithm can execute in parallel (compute the fraction 1/20 from that 5% number). That limitation led to a search for embarrassingly parallel
algorithms