22%
04.08.2020
in the standard Python built-ins [2] and in the NumPy library [3].
Figure 1: IPython session comparing two implementations of a round routine.
Unless you
22%
30.11.2025
. In the test scenario, I defined a backup schedule with the following settings:
Schedule: weekly
Daily full backup: Monday – Friday 20:00
Daily incremental backup: Monday – Friday 08:00--18:00, 30
22%
02.02.2021
interacts with the environment as an agent, much like a sentient being (Figure 3). The agent has to explore the environment and typically only learns after a certain number of actions whether
22%
21.01.2020
7 1 56008 loop1
06 7 2 56184 loop2
07 7 3 91264 loop3
08 259 0 244198584 nvme0n1
09 8 0 488386584 sda
10 8 1 1024 sda1
11
22%
12.05.2020
.04"
],
"RepoDigests": [
"nvidia/cuda@sha256:3cb86d1437161ef6998c4a681f2ca4150368946cc8e09c5e5178e3598110539f"
],
"Parent": "",
"Comment": "",
"Created": "2019-11-27T20:00:08
22%
04.12.2024
,
06 "mileage": 15000,
07 "features": ["Sunroof", "Leather seats"]
08 }
09 {
10 "type": "Motorcycle,
11 "brand: "Harley-Davidson,
12 "model": "Iron 883",
13 "year": 2019,
14 "engine
22%
30.11.2025
cluster nodes, and the ext3 driver on node A wouldn't have the option of querying the state of the same DRBD resources on node B if it wanted to write to the medium.
In the worst case, a write to the DRBD
22%
21.11.2012
directions)
085
086 ALLOCATE ( unew(1:m,1:m), u(1:m,1:m) ) ! mem for unew, u
087
088 !
089 ! Boundary Conditions
090 ! ===================
091 !
092 pi = DACOS(0.0d0)
093
094 ! Top of unit square: (N)
095
22%
14.08.2017
:29.074
91.53%
1MiB
00:31.050
91.35%
lzo
128KiB
01:36.262
92.31%
1MiB
01:47.967
92.08%
xz
128KiB
03
22%
17.06.2017
, parameter :: pi = 3.14159
03 end module circle_constant
04
05 program circle_comp
06 ! make the content of module available
07 use circle_constant
08 real :: r
09 !
10 r = 2.0
11 write(*,*) 'Area